x^2=(53)^2+(5)^2

Simple and best practice solution for x^2=(53)^2+(5)^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2=(53)^2+(5)^2 equation:



x^2=(53)^2+(5)^2
We move all terms to the left:
x^2-((53)^2+(5)^2)=0
We add all the numbers together, and all the variables
x^2-2834=0
a = 1; b = 0; c = -2834;
Δ = b2-4ac
Δ = 02-4·1·(-2834)
Δ = 11336
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{11336}=\sqrt{4*2834}=\sqrt{4}*\sqrt{2834}=2\sqrt{2834}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{2834}}{2*1}=\frac{0-2\sqrt{2834}}{2} =-\frac{2\sqrt{2834}}{2} =-\sqrt{2834} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{2834}}{2*1}=\frac{0+2\sqrt{2834}}{2} =\frac{2\sqrt{2834}}{2} =\sqrt{2834} $

See similar equations:

| 4(g+8)=2g+7+2g | | 7x-9=5x^2 | | x^2=(53)2+(5) | | 7-e=1 | | 37=m-27 | | f-17=23 | | 5x-7=x-16 | | 3x+38=7x+2 | | 5(3x-6)=8(2x) | | -3x-9x=3(x-9) | | 14=9x-8(10+x) | | 3=y+49 | | 15x23x= | | x²+10x-11=0 | | 37=m-27 | | 19+x=131 | | 14=9x-8(10+x | | 82=-2(1-5x) | | 19+x=121 | | -15.25=b-4.080 | | -320+x=400 | | 3(x−10)=−24 | | X=(0.70x+900)+8092.08 | | 4(2x-4)-5×+4=-30 | | 7/4-5/4=a | | 6x+4=64+4=68 | | 2x^2−x−17=-5 | | 79=6c+7 | | 3/4(2x-7)=-1/8(5-2x) | | (x–5)=3x+21 | | 1.4x+2=0.5x+2 | | 4(10x)=360 |

Equations solver categories